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Motivated by recent observations of C4 symmetry breaking in strongly correlated two-dimensional electron
systems on a square lattice, we analyze this phenomenon within an extended Fermi-liquid approach. It is found
that the symmetry violation is triggered by a continuous topological phase transition associated with exchange
of antiferromagnetic fluctuations. In contrast to predictions of mean-field theory, the structure of a part of the
single-particle spectrum violating C4 symmetry is found to be highly anisotropic, with a peak located in the
vicinity of saddle points.
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I. INTRODUCTION

Experimental studies of strongly correlated two-
dimensional �2D� electron systems have revealed violations
of the fundamental symmetries of time reversal and C4 rota-
tional invariance inherent in the ground states of these sys-
tems on a tetragonal lattice.1–6 Considerable theoretical effort
has been aimed at understanding the nature of these phenom-
ena and identifying their underlying mechanisms. In this ar-
ticle, we focus on C4 symmetry breaking, reserving the
analysis of T-invariance violation for the next paper. As re-
gards C4 symmetry, Kivelson, Fradkin, and Emery7 were the
first to discuss the case of nematic phase transitions, well
before relevant experimental data became available. Some-
what later, Yamase and Kohno8 �within the t-J model� and
Halboth and Metzner9 �within the Hubbard model� attributed
the breaking of fourfold symmetry to violation of a Pomer-
anchuk stability condition10 associated with antiferromag-
netic fluctuations. An analogous result was obtained by
Valenzuela and Vozmediano within an extended Hubbard
model.11

As a rule, calculations on the ordered side of the impli-
cated second-order phase transition are carried out within the
mean-field �MF� approach.12–17 An effective Hamiltonian
containing a separable interaction d2�p�d2�p1� with order pa-
rameter d2�px , py�=cos px−cos py is adopted to analyze the
onset of C4 symmetry violation and properties of phases aris-
ing beyond the critical point. �Momentum components px , py
are measured in units of the inverse lattice constant.� This
approach has the advantages of transparency and analytical
accessibility. However, it has noteworthy shortcomings, in-
cluding sacrifice of translational invariance of the interac-
tion. Furthermore, the structure of the relevant order param-
eter is always postulated in the MF theory; as a rule the
simplest assumption is made consistent with the type of sym-
metry breaking being considered. However, the structure of
the new ground state often turns out to be quite intricate,
such that it cannot be properly described in terms of any
single order parameter. As will be seen, it is just this situation
that emerges in dealing with the C4 symmetry violation in
question.

In the scenario proposed here, the system is considered to
be on the disordered side of an antiferromagnetic phase tran-
sition; hence the corresponding Pomeranchuk stability con-
dition is not violated. With the system situated far from the
transition point, the fluctuation exchange is readily analyzed
and is too weak to gap out the single-particle spectrum. It
will be shown, however, that even if the antiferromagnetic
fluctuations are weak, their momentum dependence is able to
promote a topological phase transition associated with dis-
ruption of C4 rotational invariance.

In Sec. II we adopt the Landau-Migdal quasiparticle ap-
proach to investigate C4 symmetry breaking in a 2D elec-
tronic system on a square lattice. A simple model with an
infinite-range interaction function is employed in Sec. III to
analyze a quasiparticle rearrangement due to antiferromag-
netic fluctuations. In Sec. IV we present and discuss results
of numerical calculations for a more realistic model having a
finite-range interaction. Section V is devoted to explanation,
within the infinite-range model, of the arc structure of the
Fermi line observed in many high-Tc materials. Our findings
are summarized in Sec. VI.

II. C4 SYMMETRY BREAKING WITHIN THE
FERMI-LIQUID APPROACH

Adopting the Landau-Migdal quasiparticle picture, in
which the physical many-fermion system is viewed as a sys-
tem of interacting quasiparticles, the genesis of C4 symmetry
breaking can be investigated based on the fundamental
relation18,19

���p�
�p

=
��p

0

�p
+

1

2
Tr� F��,���p,p1�

�n�p1�
�p1

d�1, �1�

where d�=dpxdpy / �2��2 is an element of 2D momentum
space. This relation connects the quasiparticle spectrum ��p�
with the quasiparticle momentum distribution n�p�= �1
+exp����p�−�� /T��−1 through a phenomenological interac-
tion function F. This function, which is defined by a specific
static limit of the quasiparticle scattering amplitude with ini-
tial and final energies on the Fermi surface,18,19 depends only
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on the momenta p, p1 of the colliding quasiparticles. Of the
two particle-hole channels relevant to the scattering ampli-
tude F, denoted t and u in the Mandelstam’s terminology, the
transverse t channel carries vital information in the momen-
tum transfer q=p−p1, whereas the longitudinal u channel is
silent because the corresponding momentum transfer is close
to zero.

In homogeneous matter where total momentum is con-
served, the first term on the right side of Eq. �1� is just the
bare velocity p /M, with M the free particle mass.20 In the
presence of a crystal-lattice field, the bare group velocity is
multiplied by a quasiparticle effective charge eq�p�. How-
ever, this modification will be ignored since it reduces
merely to a renormalization of phenomenological coeffi-
cients ti specifying 2D tight-binding electron spectra,

�p
0 = − 2t0�cos px + cos py� + 4t1 cos px cos py + ¯ . �2�

We are concerned specifically with the impact of antiferro-
magnetic fluctuations on the electron spectra ��p� calculated
using Eq. �1�. Treatment of the effect of these fluctuations on
the interaction F does not encounter difficulties far from the
attendant antiferromagnetic phase transition. The corre-
sponding fluctuation exchange is adequately addressed
within the Ornstein-Zernike approximation, which neglects
scattering of fluctuations. The part of F responsible for the
exchange is then

F���	
e �p,p1� = 
2�����	��p − p1 − Q�2 + �−2�−1. �3�

The constant 
 represents the spin-fluctuation vertex and Q
= �� ,�� is the antiferromagnetic wave vector while � is the
correlation radius.

Inserting Eq. �3� into Eq. �1� and evaluating the spin-
fluctuation contribution aided by the identity 2�����	

=3	�		��−��	���, one arrives at

��p� = �p
0 +

3
2

2
� n�p1�

�p − p1 − Q�2 + �−2d�1. �4�

The normalization condition 2�n�p�d�=� determines the
chemical potential � consistent with density �. This ap-
proach to the problem is self-consistent provided the dimen-
sionless parameter fN�0� is rather small, where f
= �3
2 /4��ln�1 /�� is a coupling constant and N�0�
	1 /2�t0 is the density of states of a 2D electron gas on a
square lattice having the tight-binding spectrum, Eq. �2�.

Direct numerical solution of this 2D nonlinear integral
equation is extremely time consuming. If only the compo-
nent of the interaction, Eq. �3�, proportional to d2�p�d2�p1� is
retained, then beyond the point where the corresponding Po-
meranchuk stability condition is violated, one obtains the
ordinary mean-field theory equations. However, this approxi-
mation is quite poor for the interaction, Eq. �3�, which peaks
at momentum transfer q=Q. Accordingly, the customary MF
scenario must be regarded as vulnerable.

Our approach to the problem stems from this observation:
collapse of collective degrees of freedom associated with
violation of sufficient conditions10 for the stability of the
standard Landau Fermi-liquid �FL� state is not the only pos-
sible scenario for the breakdown of C4 symmetry. A viable

alternative is provided by violation of a necessary stability
condition.21 This condition requires that an arbitrary admis-
sible variation 	n�p� from the FL quasiparticle momentum
distribution nF�p�, while conserving particle number, must
produce a positive change in the ground-state energy E0,

	E0 =� ���p;nF�p�� − ��	n�p�d� 
 0, �5�

where ��p ;nF� is the spectrum of single-particle excitations
and � the chemical potential.

Violation of condition �5� is accompanied by a change in
the number of roots of the equation,

��p,nF� = � , �6�

which implies a change in the topology of the Fermi surface.
For a thorough development of the concept, see the review
by Volovik.22 Throughout, we adhere to his rigorous quanti-
tative definition of topological phase transitions, as distin-
guished from looser notions such as transitions between large
and small Fermi surfaces that are also prevalent in the litera-
ture. It should be emphasized that in contrast to the original
Lifshitz description,23 the topological transition under con-
sideration is triggered by the interaction between quasiparti-
cles �see also Refs. 24–31�.

III. QUASIPARTICLE REARRANGEMENT WITHIN A
SIMPLIFIED MODEL

To gain insight into the essence of this scenario, we re-
strict the analysis to zero temperature and simplify the inter-
action. Replacement of the interaction term, Eq. �3�, by an
infinite-range form 
	�q−Q� leads directly to the explicit
version21

��p� = �p
0 + fn���p + Q�� �7�

of relation �1�, where f is the coupling constant identified
above. This treatment is analogous to that adopted by
Nozières26 in a study of non-FL behavior of strongly corre-
lated Fermi systems in the case where forward scattering in
the t channel prevails. Equation �7� can be derived within a
standard variational procedure based on the formula21

E =� ��p
0n�p� +

1

2
fn�p�n�p + Q��2d� �8�

for the energy E of the model quasiparticle system. This
form for the energy functional admits a greatly simplified
analysis of the problem due to the partial separation of dif-
ferent p channels.

To proceed, we observe first of all that at T=0, the posed
rearrangement of the initial standard Landau state can occur
only in those 2D systems where there exist hot spots,32

points situated on the Fermi line and connected by the vector
Q. Indeed, in systems with small quasiparticle filling, the
product n�p�n�p+Q� vanishes for any momentum p, so that
the ground-state energy is independent of the coupling con-
stant f . The same is true in the case of small hole filling.

In systems with hot spots, the rearrangement occurs due
to breaking of the quasiparticle pairs occupying single-
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particle states with momenta p and p+Q. The corresponding
domain R �the “reservoir”� consists of four quasirectangles,
each adjacent to one of the saddle points
�0,�� , �� ,0� , �0,−�� , �−� ,0� of the tight-binding spec-
trum �p

0. Each of the four elements of R is confined between
�i� the border of the Brillouin zone, �ii� the counterpart of the
initial Fermi line, defined by the equation �p+Q

0 =�, and �iii�
two segments of the Fermi line embracing the given saddle
point.

Quasiparticles move out the domain R to resettle in a
region L where all pairs of single-particle states connected
by the vector Q are empty. The region L comprises four
“lenses,” situated between neighboring hot spots and
bounded by the initial Fermi line and its counterpart �see
panel �a� of Fig. 1�. The transfer of one quasiparticle from R
to L produces a gain in energy which is just the coupling
constant f minus the loss � of kinetic energy. Its minimum
�min is attained when a quasiparticle, vacating a state in R
with momentum p, occupies in L a state of lowest energy,
given by the chemical potential, so that �min=�−�p

0. There-
fore the rearrangement is favorable provided �p

0 −�+ f �0.
An alternative process involves transfer of the quasiparti-

cle counterpart, which has momentum p+Q. In this case, the
rearrangement occurs provided �p+Q

0 −�+ f �0. The choice
between the two options is decided by comparing the corre-
sponding energies. The boundary at which one behavior
gives way to the other is determined by the relation �p

0

=�p+Q
0 . Since the straight line so defined is part of the new

Fermi line, we infer that the rearrangement has converted the

original, isolated hot spot into a continuous straight line of
hot spots, i.e., a hot line �HL� �see panel �b�, Fig. 1�.

These results imply that quasiparticles are swept from a
certain subdomain S of R consisting of eight approximately
trapezoidal strips. The boundaries of a given strip are traced
on three sides by �respectively� the initial Fermi line, the
border of the Brillouin zone, and a line geometrically similar
to the initial Fermi line but shifted into the domain R �see
Fig. 1�. The strip’s fourth side drawn in red �gray� is just the
hot line. This solution is self-consistent: any single-particle
state with momentum p�S has its counterpart, with momen-
tum p+Q, located outside S, and this state is occupied, so
that Eq. �7� is fulfilled. Transparently, the new momentum
distribution does not violate C4 symmetry.

Defining the strip energy width Ws of the region S as the
maximum of the initial hole energy 
�p

0 −�i
 consistent with
the rearrangement, one has Ws=Di−Df, where 2Di �respec-
tively, 2Df� is the minimum energy distance between the
segments of the initial �final� Fermi line situated in different
half planes. On the other hand, one finds Ws= f − ��−�i�,
where �i is the initial chemical potential. To estimate the
strip width Ws and the difference �−�i, both proportional to
f , we �i� approximate the Fermi velocity v0�p�= ���p

0 /�p�0 on
the Fermi line in terms of two parameters, namely, its aver-
age magnitudes vl

0 and vs
0 in the lens and strip regions, re-

spectively, and �ii� invoke the coincidence of the chemical
potential with the Fermi energy that is intrinsic to Landau
theory. In the lens region L one then has �−�i=vl

0wl, where
wl is the momentum width of the lens filling. In the domain
S, one obtains the analogous formula Ws� f − ��−�i�
=wsvs

0. Particle-number conservation implies that wlll
=2ws�ls−ws /2�, where ls is the strip length, ll is the lens
length, and ws=Ws /vs

0 is the momentum width of the strip.
Upon elimination of ws and wl from these relations, we

arrive finally at

� − �i =
2fvl

0ls

2vl
0ls + vs

0ll

, �9�

for small ws.
As long as all the saddle points remain occupied, C4 sym-

metry is preserved. However, as the electron density � de-
creases, the distance between the new Fermi line and the
saddle points shrinks. At a critical density �c, or equivalently,
at the critical constant fc where two segments of the Fermi
line that cross the same boundary of the Brillouin zone
merge at the saddle point, the number of solutions of Eq. �6�
certainly drops, thereby signaling a topological phase tran-
sition. In the critical situation one has Df =0, or equivalently
Ws=Di. The trapezoidal shape S then becomes triangular,
and we have

Di =
fcll

vl
0ls + vs

0ll

	 fc. �10�

Using this result, the critical value Fc of the dimensionless
constant F= fN�0� is given by Fc=D /2�t0. Assuming the
ratio D / t0 to be small, we thus have Fc�1, which implies
that the derivative ���p ,�� /�� remains small, i.e., that the �
dependence of the mass operator ��p ,�� is moderate.31 Un-

FIG. 1. �Color online� Panel �a�: Fermi line �black� and its coun-
terpart �blue �gray�� for the bare tight-binding spectrum �p

0 =
−2t0�cos px+cos py�+4t1 cos px cos py with t1 / t0=0.45. The reser-
voirs R are colored in black, and the lenses L, in light gray. The hot
spots connected with each other by the vector Q are symbolized by
red �gray� dots. Panel �b�: Fermi line for the model assuming the
infinite-range interaction function f�q�= �2��2f	�q−Q�, with
fN�0�=0.13. Hot lines are drawn in red �gray�. Fermi lines for the
bare tight-binding spectrum �p

0 and its counterpart are shown as
green �light gray� and blue �gray� lines, respectively.
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der these conditions, the generation of new branches of the
single-particle spectrum ��p�, such as the small pockets of
the Fermi surface suggested to explain magnetic oscillations
in the pseudogap regime,33 is questionable.

Beyond the transition point �e.g., at ���c�, C4 symmetry
is necessarily broken. Suppose, conversely, that it is pre-
served. Then all the saddle points must then be emptied si-
multaneously, implying that every rearranged saddle point
energy �s��� exceeds the chemical potential ����. But ac-
cording to Eq. �7�, the interaction contribution to �s vanishes
when all the saddle points are emptied. Hence the saddle-
point energy �s��� must coincide with the corresponding bare
value �s

0���, implying that �s
0���
����. However, if the dif-

ference �c−� is small, then without fail �s
0�����i���. Thus a

contradiction is encountered, since it follows from Eq. �9�
that �i��������. This deadlock is resolved if, beyond the
critical point, only one of two neighboring saddle points is
emptied, with the second remaining occupied. Such a solu-
tion is indeed consistent with Eq. �7�.

IV. NUMERICAL RESULTS WITH REALISTIC
INTERACTION

The results we have derived for the simple model based
on an infinite range interaction 
	�q−Q� are in agreement
with those obtained from numerical calculations performed
for the more realistic interaction, Eq. �3�, and displayed in
Fig. 2 and Eq. �3�. Some complications associated with the

finite correlation radius of the interaction, Eq. �3�, will be
considered below, but first we examine the results of the
extended Fermi-liquid theory in comparison with corre-
sponding predictions of MF theory. The MF single-particle
spectrum coincides with a bare spectrum before the transi-
tion point is reached, while beyond the transition it receives
a correction 	�MF�p�=��cos px−cos py�, with the order pa-
rameter � taking the same value throughout the Brillouin
zone. The Fermi line calculated within the extended FL ap-
proach deviates substantially from that predicted by MF
theory. In particular, upon comparing the upper and lower
panels of Fig. 2, we see that in the lens domain the location
of the Fermi line remains almost unchanged as the system
passes through the transition point. Indeed, this behavior also
prevails over a significant portion of the HL region away
from the saddle points. In other words, beyond the point
where C4 symmetry is lost, the associated rearrangement of
the Fermi surface occurs only in the immediate vicinity of
the saddle points—in a sharp contrast to what is found in MF
theory.

Analogous conclusions follow from a study of Fig. 3,
where the Fermi velocity calculated on the basis of Eq. �1� is
plotted. It is seen that the correction to the bare Fermi veloc-
ity vF

0 stemming from antiferromagnetic correlations as de-
scribed by Eq. �3� remains smooth and small except in the
HL region, where it soars upward.

Such behavior of the Fermi velocity vF, which persists
through the transition point, can be elucidated by analyzing
the Landau relation �1�. First, we observe that the over-
whelming contributions to the integral in this relation come
from the HL region; otherwise there is no appreciable over-
lap between the peak in the interaction function and the 	
peak in the derivative �n�p� /�p. To proceed further, we in-
troduce a new set of orthogonal momentum coordinates
pt , pn, with the axis pt directed along the HL and the axis pn
perpendicular to it. In the HL region we then have dpxdpy

FIG. 2. �Color online� Fermi lines for the model assuming the
finite-range interaction function f�q�= fa / ��q−Q�2+�−2�, with �
=30. Panel �a�: faN�0�=0.32; C4 symmetry is not broken. Panel �b�:
faN�0�=0.48; one of the two solutions with spontaneously broken
C4 symmetry is shown. Only the first quadrant of the Brillouin zone
is drawn since neither px→−px nor py→−py reflection symmetry is
broken. Fermi lines for the bare tight-binding spectrum �p

0 and its
counterpart are shown as green �light gray� and blue �gray� lines,
respectively.

FIG. 3. �Color online� Fermi-velocity magnitudes vF

= 
���p� /�p
 �in units of 2t0�, evaluated along the Fermi line as a
function of the angle � defined in the inset, for different single-
particle spectra ��p�. Results are shown for the bare tight-binding
model with the same parameter choice as in Fig. 1 �brown �dark
gray� line� and for the Fermi-liquid-theory model of Fig. 2 at
faN�0�=0.32, T=10−4 �green �light gray� line�; faN�0�=0.48, T
=10−4 �red �black� line�; and faN�0�=0.48, T=10−2 �blue �gray�
line�. Broken C4 symmetry of the solid/red curve with respect to x-y
exchange is manifested by its different behavior in the two shaded
areas close to the saddle points.
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=dpndpt and dn�p� /dpn= �	�pn�, the sign of the derivative
being positive in the left half plane and negative otherwise.
This alternate sign is responsible for the vanishing of the
group velocity at the saddle points, through interference of
the contributions to the integral term in Eq. �1� from neigh-
boring segments of the Fermi line situated in the two half
planes. The distance between these segments �as defined in
Sec. III� is 2Df. If the inverse correlation radius �−1, which
measures the radius of the spin-interaction term, Eq. �3�, in
momentum space, turns out to be so small that �−1�Df, then
the two contributions cease to interfere, and the elevation of
the HL value of the Fermi velocity is readily estimated as

vF�pt� 	 �2��−2�−1. �11�

These conclusions are in agreement with the results for the
model with finite-range interaction presented in Fig. 3. At the
same time, the estimate, Eq. �11�, is in agreement with the
jump of the single-particle spectrum ��p� on crossing the
HL, found for the simple model with 	�q−Q� interaction and
implying an infinite value of the model’s HL group velocity.
The above considerations demonstrate that the FL rearrange-
ment of the ground state leading to the phenomenon of C4
symmetry violation has little in common with the rearrange-
ment predicted by conventional MF theory based on the
single order parameter d2.

The analysis can be made more informative by focusing
on the difference D�px , py�=��px , py�−��py , px� and its inte-
gral D over the intermediate momenta px , py. Both quantities
vanish on the disordered side of the phase transition and
beyond the transition point it is straightforward to evaluate D
by means of Eq. �4�. For D→0, one can make use of the
formula n�px , py�−n�py , px�= �dn�p /d����p�D�px , py� to recast
this equation in a form

D�p� = −� F�p,p1�
�n�p1�
���p1�

D�p1�
d2p1

�2��2 �12�

equivalent to the Pomeranchuk stability condition, whose
violation is a prerequisite for the MF description of C4 sym-
metry breaking. From the preceding discussion, we infer that
if a nontrivial solution of Eq. �12� exists, it must be aniso-
tropic, with a peak located in the HL domain and having a
width of order �−1. Such a structure of the order-parameter
function D�p� is quite unlike that adopted in conventional
MF theory of the observed x-y symmetry violation. In evalu-
ating the integral in Eq. �12� we employ the relation
�n�p� /���p�= �dn�pn� /dpn� /vF. Referring to the above deri-
vation of the estimate, Eq. �11�, it is seen that the relevant
value of the group velocity is vF	�, as long as �� �Di
−Ws�−1. The � dependence of the integral is then effectively
nullified, precluding nontrivial solutions of Eq. �12�.

Nontrivial solutions of Eq. �12� can in fact emerge before
the two neighboring pieces of the Fermi line meet each other
at the saddle point, provided �� �Di−Ws�−1. In this case, the
characteristic value of the Fermi velocity drops somewhat,
thereby enhancing the integral. Whether this enhancement is
sufficient for the violation of the Pomeranchuk stability con-
dition will be decided in a more intensive round of numerical
calculations.

It is worth emphasizing that the situation underlying the
violation of C4 symmetry in systems in which the Fermi
surface comes close to Van Hove points is not specific to
either the MF treatment or our analysis. In fact, the effective
Stoner factor, which determines the enhancement of the ef-
fective field acting on a particle in matter, is proportional to
the product of the interaction strength and the density of
states. The latter diverges at a Van Hove point, and hence the
corresponding Stoner factor diverges as well, independently
of the shape of the order parameter. The crucial point of
distinction is as follows. In MF theory, which reasonably
exploits the enhancement of the density of states near the
Van Hove points and an order parameter d2�p� having the
needed symmetry, the effective field stretches over the whole
Brillouin zone in accordance with the chosen shape of the
order parameter. In our approach based on exchange of anti-
ferromagnetic fluctuations between electrons, it is instead the
shape of the exchange interaction that governs the behavior
of the effective field. Since this field dies out at rather small
distances from the saddle points, the topological rearrange-
ment of the Fermi surface violating C4 symmetry occurs only
in the regions close to these points.

Let us now identify inherent properties of the interaction
function F responsible for violation of C4 symmetry and
more generally for topological transitions. In homogeneous
matter, it is well understood that topological phase transitions
are characterized by a change in the number of sheets of the
Fermi surface.30 In 2D electron systems on a square lattice,
topological transitions are of much the same character. The
salient common feature here is that no symmetry is violated,
provided that a local rearrangement of the quasiparticle mo-
mentum distribution leads to dominance of forward scatter-
ing in the t channel referred to the momentum transfer q
specifying F�q�. On the other hand, in the case of antiferro-
magnetic fluctuations backward scattering prevails. Then, at
the transition point, quasiparticles leaving the vicinity of one
saddle point may move into the vicinity of a neighboring
saddle point. Thus the sheet number remains unchanged; in-
stead, the symmetry of the ground state is violated.

V. ARC STRUCTURE OF THE FERMI LINE

The model we have developed may also have a bearing on
the emergence of the arc structure of the Fermi line observed
in many high-Tc materials. If we consider pairing based on
the interaction, Eq. �3�, then Eq. �8� must be supplemented
by a pairing term �f /2���p���p+Q�,26 where ��p�
= �a+�p�a+�−p�� is a superfluid density. With this modifica-
tion, Eq. �7� as written remains unchanged, but the quasipar-
ticle occupation number n�p� acquires the BCS form n�p�
=1 /2−��p� /2E�p�, with quasiparticle energy E�p�= ��2�p�
+�2�p��1/2. The additional equation

��p� = − f
tanh�E�p + Q�/2T�

2E�p + Q�
��p + Q� �13�

determines the gap function ��p�. In advance of the topo-
logical phase transition, where C4 symmetry is preserved, a
standard nonzero solution of Eq. �13� has the property
��p�=−��p+Q� exhibited by D pairing, and we find
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E�p�E�p + Q�
tanh�E�p�/2T�tanh�E�p + Q�/2T�

=
f2

4
. �14�

As seen from Eq. �14�, the associated gap Emin in the single-
particle spectrum is suppressed near the diagonals of the
Brillouin zone, where

Emin�T = 0� 

f2

4Wl
, �15�

Wl being the total-energy lens width. On moving along the
Fermi line toward the hot line where one has E�p�=E�p
+Q�, the gap soars upward, with Eq. �14� yielding

E�p,T = 0� 	
f

2
. �16�

It is important to note that in the HL region itself, the gap
value is markedly suppressed, because Eq. �7� tells us that

��p�
	 f in a significant part of this region, which is incom-
patible with Eq. �16�. This indicates that pairing has little
impact on the violation of C4 symmetry, which primarily
involves the immediate vicinities of the hot lines.

VI. CONCLUSION

In summary, we have addressed the problem of
C4-symmetry violation in electron systems on a square lattice

within a self-consistent Fermi-liquid approach, assuming that
the Landau interaction describes the exchange of antiferro-
magnetic fluctuations, which is treated within the Ornstein-
Zernike approximation. We have demonstrated that as the
strength of this interaction builds up, the distance between
saddle points and the Fermi line shrinks, eventually generat-
ing a quantum critical point of a new type, at which a con-
tinuous topological phase transition triggers the violation of
C4 symmetry. The group velocity becomes finite again once
the transition point is passed. Thus, the properties of the
electron system are governed by Fermi-liquid theory
throughout the vicinity of the proposed quantum critical
point, implying that magnetic oscillations should be ob-
served on both the sides of the topological transition, in
agreement with recent measurements.34
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